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Abstract. The research is related to the problem of coherent evolution of a do-

main-specific language (DSL) in response to evolution of the application domain 

and users’ capabilities. We offer a solution of that problem based on a particular 

model-driven approach. We give the whole definition of DSL in terms of model-

oriented approach. Such definition allows us to define the DSL development us-

ing the mechanism of consecutive, consistent transformations between DSM, 

DSL metamodel and DSL concrete syntax model. In our approach we call such 

transformations as projections. 
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1 Introduction 

Currently, domain-specific languages (DSL) become more and more widespread. Such 

popularity can be explained by the fact, that DSL is a fairly simple and convenient way 

of organizing work in a certain subject area. DSLs contain only the required set of terms 

of the domain, representing some kind of its reflection, because every DSL uses as its 

basis some model of the current subject area [1]. As a result, the effectiveness of DSL 

actually depends on the degree of correspondence between the subject area and its 

model: a greater level of consistency results in greater flexibility of the language. 

First of all, when analyzing the issue of DSL development and use, researchers take 

into account the fact that DSL should strongly correspond to the subject area for which 

it is created. All researchers ([1, 4, 5]) note, that the core element of any DSL is a certain 

model, which is some kind of the reflection of the subject area for which DSL is created. 

Actually, such a model determines not only the DSL structure, but also its semantic, 

behavior and mechanisms of working with DSL. For example, Cleenewerck notes that 

the effectiveness of DSL completely depends on the completeness of its internal model 

[5]. 

Researchers also agree, that any domain demonstrates a tendency to changes over 

time (evolution, in other words). In accordance with the evolution of the subject area, 

the evolution of its conceptual model also occurs [2, 3]. However, DSL frequently re-

mains unchanged, since it is built on a snapshot of the domain (and its conceptual 
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model) and reflects only the fixed state, without reacting to subsequent changes. This 

specificity in the process of DSL design results in the emerging the problem of main-

taining co-evolution of DSL and its domain and, accordingly, co-evolution of DSL and 

the conceptual model. At worst, uncoordinated changes can lead to the situation, when 

DSL, being fixed in its original state, loses its relevance for the significantly changed 

domain. As a result, the language becomes inapplicable for solving practically im-

portant tasks in the subject area. In [7] Challenger et al. describe a case of DSL, which 

could not create entities, unspecified in the original ontology model. 

We also need to note that the sceneries of working with DSL may vary due to con-

siderable differences in experience of information needs of different DSL users. As a 

result, in parallel to the development of the skills and knowledge of the user, the set of 

DSL terms, that he/she operates with, can also change. It means, that every user defines 

his own model of DSL and, because every DSL is connected with the domain, creates 

own domain representation, which may differ from the one originally used in the DSL. 

In these circumstances, we also face the evolution of the DSL and the subject area, 

which leads to the inconsistencies between the domain and the DSL model and has to 

be resolved through the use of interconnected transformations. 

Thus, we can argue that DSL is a dynamic system, which can evolve under the in-

fluence of various factors. Evolution can occur both under the influence of changes in 

the subject area itself ([5, 8]), and under the influence of internal factors, such as 

changes in the behavior of users of the system [9] or/and their heterogeneity [10]. 

It is important to note that researchers agree that evolution is an important step in the 

life cycle of the DSL. However, most of these works doesn’t cover the mechanism for 

tracking changes in the subject area with the consequent translation of them into DSL 

model. Furthermore, it is believed that by the time of DSL development, the domain 

model is already created and somehow transferred to DSL model. It is fair to say that 

some researchers, including P. Bell [11], J.G.M. Mengerink, A. Serebrenik, M. van den 

Brand [12], R.R.H. Schiffelers [13] and in particular, J. Sprinkle, G. Karsai [14], are 

exploring the evolution of graphical domain models. Unfortunately, they do not con-

sider the subsequent transfer of the changes provided (and corresponding rules) into 

DSL models [14]. On the contrary, they try to keep the structure of DSL unchanged, 

that does not correspond to the assumption that DSL model is strongly corresponding 

to the domain model, that means that any change in the domain model should result in 

an equivalent change in DSL model. 

Summarizing, it can be argued that there is a problem of developing mechanisms 

that provide different models for the DSL evolution. both under the influence of 

changes in the domain model, and in the level of user competences. 

The most common approach defines a two-level structure of any DSL [6]: the level 

of meta-model, responsible for the semantic of the DSL, and the level of the concrete 

DSL syntax. In order to create the meta-model of DSL different grammar tools are used 

[15], in particular ANTLR, etc. Unfortunately, such grammar-oriented definition of 

DSL structure is very strong and doesn’t allow further modification of the DSL accord-

ing to the changes in the domain or in users’ needs. The only way in this case is to 

define new DSL, which is not consistent with the previously created. Obviously, such 

an approach is ineffective in the case when we are dealing with DSLs for rapidly 
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changing domains, where the context is modified not only by changes in the concepts 

of the domain, but also by the requirements of users [10]. 

There are some attempts to resolve this problem of DSLs inconsistency. For exam-

ple, Challenger et al [7] propose to use the formal model of the domain during the DSL 

development in order to guarantee the maximum coherence between them. As formal 

domain models, object-oriented UML models and ontologies can be used (in more de-

tails both types are described by Guizzardi [16]). Both approaches allow to achieve 

sufficient flexibility in terms of creating a DSL on the basis of a formal description of 

the domain. However, in both cases we do not solve the problem with the further evo-

lution of DSL in case of the domain modifications. 

There are some attempts to resolve these contradictions. For example, Cleenewerck 

in [5] propose to segment the domain model and develop the DSL as a set of independ-

ent components, connected with each separated fragment of the domain model. The 

extension of this approach is presented by Bell [11], who not only used the ontology 

for the domain representation but coordinate changes in it with a change in the DSL. 

However, these changes were implemented manually, that requires from the users to 

have skills in the domain conceptualization technics and model transformations. 

Another alternative can be using the ontologies as a formal representation of the 

domain [10]. The ontology allows as to represent the domain as a set of its concepts 

and relationships between them, as to formalize the constraints of the domain, with 

special focus on the heterogeneity/taxonomy. Several examples of using the ontologies 

for the conceptualization of the domain and its application for the DSL quality evalua-

tion are described in articles by Guizzardi [16, 17]. 

At the same time, all these approaches focus on the alignment of the DSL with the 

domain model, leaving behind the boundaries the compliance of DSL and the needs of 

users. This task is interpreted like more applied, implementing at the level of general 

programming language. On the other hand, Karsai [18] sufficiently fully justifies that 

the correspondence between user requirements and changes in DSL can be described 

in a model-oriented manner. Thus, evolution in the DSL syntax can be organized ac-

cording to principles similar to the organization of its correspondence with the formal 

description of the domain. 

In our research we support the idea, that ontological model can be the most strong 

and effective way for the domain representation, because contains not only the concepts 

of the domain and relations between them but also restrictions and logical rules, im-

portant during the DSL syntax definition. That ontology-based approach seems to be 

more effective in comparison with similar ones, for example, described by Cleenewerck 

or by Challenger. Cleenewerck [5] tries to use the mechanism of graph transformation 

without prior establishing a correspondence between the ontology and DSL. It leads to 

the need to define a whole complex of disparate transformation rules for each compo-

nent of the language. Furthermore, this system of transformations has to be changed 

every time, when DSL modifications are required. In contrast to Cleenewerck, Chal-

lenger [7] proposes to abandon the dynamic matching of the subject area and DSL, but 

to redefine the DSL model whenever the ontology is changed. This approach is also not 

optimal, since, in fact, it offers not to adapt the existing DSL to changes in the domain, 

and each time to create a new language. 
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Much more effective can be using the idea, that DSL can be described in the model-

oriented manner. Such definition of DSL allows us to describe the process of its devel-

opment as a sequence of interconnected, consecutive model-to-model (M2M) transfor-

mations. As a result, we can describe definition of DSL evolution in unified manner. 

Furthermore, we can also guarantee, that DSL dialects (different DSL syntaxes defined 

under the single meta-model) are consistent and can be transformed between them-

selves, using the ideas of invariants (resilient metamodel entities). In what follows, we 

describe our approach in more details, starting with the idea of domain semantic model 

(DSM) and its further transformation into DSL structure components with the subse-

quent definition of different DSL dialects with M2M transformations. 

2 Background 

2.1 Domain Semantic Model (DSM) 

Since any DSL contains some domain model, and, as any language, contains semantical 

and syntactic parts, we argue, that domain model should also contains all needed con-

cepts of the domain semantics. As a result, the domain semantic model should be used 

as a core element of DSL development. 

DSM offers a flexible and agile representation of domain knowledge. DSM can be 

constituted by either just small pieces of a domain knowledge (e.g. small taxonomies 

equipped with few rules) or rich and complex ontologies [16] (obtained, for example, 

by translating existing ontologies). That gives respectively weak or rich and detailed 

representation of a domain [19]. More formally DSM is a seven-tuple of the form: 

 𝐷𝑆𝑀 = (ℋ𝐶 ,ℋ𝑅 , 𝑂, 𝑅, 𝐴,𝑀, 𝐷) 

where 

• ℋ𝐶  and ℋ𝑅  are sets of classes and relations schemas. Each schema is constituted by 

a set of attributes, the type of each attribute is a class. In both ℋ𝐶  and ℋ𝑅  are defined 

partial orders allowing the representation of concepts and relation taxonomies; 

• 𝑂 and 𝑅 are sets of class and relation instances also called objects and tuples; 

• 𝐴 is a set of axioms represented by special rules expressing constraints about the 

represented knowledge; 

• 𝑀 is a set of reasoning modules that are logic programs constituted by a set of (dis-

junctive) rules that allows to reason about the represented and stored knowledge, so 

new knowledge not explicitly declared can be inferred; 

• 𝐷 is a set of descriptors (i.e. production rules in a two-dimensional object-oriented 

attribute grammar) enabling the recognition of class (concept) instances contained 

in 𝑂, so their annotation, extraction and storing is possible. 

It is also important to note, that DSM usually has a dynamic structure. Any domain 

demonstrates a tendency to changes over time (evolution, in other words). In accord-

ance with the evolution of the domain, the evolution of its DSM also occurs. As a result, 
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any DSL, based on the corresponding DSM, should be adopted according to the 

changes. Consequently, the structure of the DSL metamodel should be as close as pos-

sible to the structure of DSM in order to guarantee the coherence between DSL and the 

target domain. So, that is reasonable to select a common meta-meta model which will 

be used both for definition of a DSL metamodel and DSM. We believe that a widely 

accepted object-oriented meta-meta model can be suitable for our purposes. The fol-

lowing manifestation of DSL as a special kind of the object-oriented model proves that 

believe. 

2.2 Manifestation of DSL in terms of object-oriented models 

Domain-Specific Languages (DSLs) formalize the structure, behavior, and require-

ments within particular domains problem. Such languages tend to support higher level 

abstractions than general-purpose modeling languages, and are closer to the problem 

domain than to the implementation domain. Thus, a DSL follows the domain abstrac-

tions and semantics (DSM), allowing modelers to perceive themselves as working di-

rectly with domain concepts. Furthermore, the rules of the domain can be included into 

the language as constraints, disallowing the specification of illegal or incorrect state-

ments. 

The definition of a DSL involves at least two aspects: the domain concepts and rules 

(abstract syntax or metamodel); the notation used to represent these concepts, textual 

or graphical, (concrete syntax). Such model-oriented definition of DSL allows to use 

the DSM as a basis for development of DSL metamodel, which is then converted to a 

concrete syntax. This approach enables the rapid development of languages and some 

of their associated tools, such as editors or browsers. 

From the formal point of view, a metamodel of DSL is derived from the set of entities 

of the target domain and operations on them. From this point of view, since the structure 

of every model is a combination (𝐸, 𝑅) of some entities and relations between them, 

the DSL metamodel can be formalized in a model-oriented manner as follows: 

• A set of entities of the meta-model 𝑆𝑒𝑡 = {𝑠𝑒𝑡𝑖},  𝑖 ∈ ℕ,  𝑖 < ∞, where every 

entity 𝑠𝑒𝑡𝑖 =  {𝑆𝑁𝑎𝑚𝑒𝑖 , 𝑆𝐼𝐶𝑜𝑢𝑛𝑡𝑖 , 𝐴𝑡𝑡𝑟𝑖 , 𝑂𝑝𝑝𝑖 , 𝑆𝑅𝑒𝑠𝑡𝑖} is characterized by its 

name (𝑆𝑁𝑎𝑚𝑒𝑖, which is unique within the current model), available amount 

of exemplars of this entity (𝑆𝐼𝐶𝑜𝑢𝑛𝑡𝑖 ∈ ℕ,  𝑆𝐼𝐶𝑜𝑢𝑛𝑡𝑖 ≥ 0), a set of attributes 

(𝐴𝑡𝑡𝑟𝑖 = {𝑎𝑡𝑡𝑟𝑗𝑖},   𝑗𝑖 ∈ ℕ,   𝑗𝑖 < ∞), a set of operation on exemplars of this en-

tity (𝑂𝑝𝑝𝑖 = {𝑜𝑝𝑝𝑗𝑖},   𝑗𝑖 ∈ ℕ,   𝑗𝑖 < ∞) and a set of restrictions (𝑆𝑅𝑒𝑠𝑡𝑖 =

{𝑠𝑟𝑒𝑠𝑡𝑗𝑖},   𝑗𝑖 ∈ ℕ,   𝑗𝑖 < ∞). 

• A set of relations between the entities 𝑅𝑒𝑙 = {𝑟𝑒𝑙𝑖},  𝑖 ∈ ℕ,  𝑖 < ∞, where 

every relation 𝑟𝑒𝑙𝑖 =  {𝑅𝑁𝑎𝑚𝑒𝑖 , 𝑅𝑇𝑦𝑝𝑒𝑖 , 𝑅𝑀𝑢𝑙𝑡𝑖 , 𝑅𝑅𝑒𝑠𝑡𝑖} is identified by its 

name (𝑅𝑁𝑎𝑚𝑒𝑖, which is unique within the current model), type (𝑅𝑇𝑦𝑝𝑒𝑖 ∈
ℕ,  𝑅𝑇𝑦𝑝𝑒𝑖 ≥ 0), defining the nature of the relation, the multiplicity 

(𝑅𝑀𝑢𝑙𝑡𝑖 ∈ ℕ,  𝑅𝑀𝑢𝑙𝑡𝑖 ≥ 0), which defines, how many exemplars of entities, 

participating in current relation, can be used, and a set of restrictions 

(𝑅𝑅𝑒𝑠𝑡𝑖 = {𝑟𝑟𝑒𝑠𝑡𝑗𝑖},   𝑗𝑖 ∈ ℕ,   𝑗𝑖 < ∞). 
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Accordingly we propose to consider the structure of the DSL metamodel as 

(𝐸, 𝑅, 𝑅𝑒𝑠𝑡, 𝑂𝑝𝑝), where the first two 𝐸 and 𝑅𝑒𝑙 are responsible for the object-level, 

and other 𝑅𝑒𝑠𝑡 = ⋃ 𝑆𝑅𝑒𝑠𝑡𝑖
|𝐸|
𝑖=1 ⋃ 𝑅𝑅𝑒𝑠𝑡𝑖

|𝐸|
𝑖=1 , 𝑂𝑝𝑝 represent the functional aspects. In-

terpreting the set 𝐸 as the set of entities in some domain, 𝑅 as a set of relations between 

them and 𝑅𝑒𝑠𝑡, 𝑂𝑝𝑝 as a set of operations on entities and restrictions to them, we argue 

that the structure of the DSM and the structure of DSL metamodel can be related by 

some correspondence. That means, that there is a way for organizing automated devel-

opment of DSL based on the DSM and vice versa. 

The concrete syntax of a DSL provides a realization of its abstract syntax as a map-

ping between the metamodel concepts and their textual or graphical representation. 

From this point of view, we can state, that the concrete syntax of DSL can be repre-

sented as a reflection of the metamodel, needed for representation of a certain problem 

situation. 

In addition, a syntactic part of DSL can also be separated into two levels: the level 

of objects and the level of functions. The object-level is equivalent to the set of objects 

of the metamodel. The functional level contains operations, which allow to specify the 

operational context for the objects. 

As follows, the structure of the syntactic level can be formalized as a triple 

(𝑂𝑠𝑦𝑛𝑡𝑎𝑥 , 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 , 𝑅𝑢𝑙𝑒𝑠𝑦𝑛𝑡𝑎𝑥), where 𝑂𝑠𝑦𝑛𝑡𝑎𝑥 ⊆ 𝐸 and 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 ⊆ 𝑅 are the subsets of 

objects and relations between them of the DSL metamodel respectively, and 𝑅𝑢𝑙𝑒𝑠𝑦𝑛𝑡𝑎𝑥 

is a set of rules, describing reflection between metamodel and concrete syntax of DSL. 

The most important thing here is, that such definition of DSL concrete syntax based 

on its metamodel doesn’t depend on the way of type of DSL concrete syntax (e.g. tex-

tual or visual). For visual languages, it is necessary to establish links between these 

concepts and the visual symbols that represent them - as done, e.g, with GMF [20]. 

Similarly, with textual languages links are required between metamodel elements and 

the syntactic structures of the textual DSL. An example of this approach is TCS. 

Under these circumstances, we can tell about the complete model-oriented represen-

tation of the DSL syntax structure. The structure allows not only to describe both levels 

of DSL syntax in structured and unified manner but optimize the process of DSL de-

velopment and further development by introducing several syntactic DSL dialects on 

one fixed metamodel. Furthermore, the versification of DSL can be provided in a sim-

ilar way on the meta-level as well as on the concrete-syntactic level, without need to 

re-create the whole DSL structure every time, when the changes are required. It’s im-

portant, since a DSL can have several concrete syntaxes. 

3 Proposed approach 

3.1 A semantic hierarchy of model-oriented DSL development 

Combining the object-oriented model of the DSL structure with the formal definition 

of DSM on the basis of a single meta-meta model, we can specialize a well-known 

semantic hierarchy of meta-models for our approach to model-oriented development 

and evolution of DSL (Fig. 1). 
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In our case this hierarchy is separated into four layers, according to the stages of the 

DSL development. Each lower level is based on the model artefacts of the upper level. 

A single M3 meta-meta-model determines common grounds for all meta- and mod-

els of the lower levels. This meta-level defines also notations in which concrete models 

will be defined and what rules for their transformations will be used. 

The structure of the semantic hierarchy determines the corresponding process of 

DSL creation. It starts with the definition of DSM, containing all important entities of 

the target domain and relationships between them. The process of DSM creation is be-

yond the scope of our current research, we propose its consistency for DSL develop-

ment. For more details on DSM definition and checking its correctness, see [16]. 

When DSM is created, we can build the DSL semantic model by the operation of 

semantic projection. Any semantic projection performs a certain M2M transformation 

of DSM to some its fragment. Thus, semantic projection fully determines the semantic 

model of a particular dialect of DSL. In this case the semantic model becomes an object-

temporal structure, because it should be adopted according changes in DSM over the 

time, thereby defining a new object filling of the DSM. 
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Fig. 1. The semantic hierarchy of projection-based DSL development 

After the semantic projection was performed, the syntactic level of DSL can be de-

veloped by a M2M transformation of the result of the corresponding projection. What 

is important, these DSL syntactic models are independent of each other and are deter-

mined by end-users in accordance with the adaptation of the semantic projection to their 

own tasks. 

Finally, created syntaxes are used by the end-users of DSL, who determine the set 

of DSL dialects within the single specific syntactic model. 
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For comparison, traditional approaches start with the manual definition of the DSL 

concrete syntax which is followed by the translation of the syntax in terms of grammars. 

Consequently, every change in the target domain leads to the need to redefine the DSL 

concrete syntax and re-create the corresponding grammar. A similar process repeats in 

a case, when changes in DSL are caused by the end-users. As a result, outcomes of 

traditional approaches contain inconsistent dialects of DSL, which cannot be mapped 

among themselves due to differences in all levels of the DSL structure. 

Using the idea, that any model can be represented in graph-oriented form, where an 

entity is a vertex and the relations between entities are edges between vertexes, in what 

follows we define the projections mechanism (applied with M2M transformations) in 

terms of graph transformations rules. 

3.2 Defining M2M transformations with graph transformation system 

For our purpose, we proposed to use a combination of metamodeling and graph trans-

formation techniques: the static structure of a language is described by a corresponding 

metamodel clearly separating static and dynamic concepts of the language, while the 

dynamic operational semantics is specified by graph transformation. 

Graph transformation provides a rule-based manipulation of graphs, which is con-

ceptually similar to the well-known Chomsky grammar rules but using graph patterns 

instead of textual ones. Formally, a graph transformation rule is a triple 𝑅𝑢𝑙𝑒 =
(𝐿ℎ𝑠, 𝑁𝑒𝑔, 𝑅ℎ𝑠), where 𝐿ℎ𝑠 is the left-hand side graph, 𝑅ℎ𝑠 is the right-hand side 

graph, while 𝑁𝑒𝑔 is (an optional) negative application condition. Informally, 𝐿ℎ𝑠 and 

𝑁𝑒𝑔 of a rule define the precondition while 𝑅ℎ𝑠 defines the postcondition for a rule 

application. 

The application of a rule to a model (graph) 𝑀 alters the model by replacing the 

pattern defined by 𝐿ℎ𝑠 with the pattern of the 𝑅ℎ𝑠. This is performed by (1) finding a 

match of the 𝐿ℎ𝑠 pattern in model 𝑀; (2) checking the negative application conditions 

𝑁𝑒𝑔 which prohibits the presence of certain model elements; (3) removing a part of the 

model 𝑀 that can be mapped to the 𝐿ℎ𝑠 pattern but not the 𝑅ℎ𝑠 pattern yielding an 

intermediate model 𝐼𝑀; (4) adding new elements to the intermediate model 𝐼𝑀 which 

exist in the 𝑅ℎ𝑠 but cannot be mapped to the 𝐿ℎ𝑠 yielding the derived model 𝑀. 

In this case, graph transformation rules serve as elementary operations while the en-

tire operational semantics of a language or a model transformation is defined by a model 

transformation system. 

A directed unattributed graph 𝐺 =  (𝐺𝑉 , 𝐺𝐸 , 𝑠𝑟𝑐, 𝑡𝑎𝑟) consists of a set of vertices 

𝐺𝑉, a set of edges 𝐺𝐸, a mapping 𝑠𝑟𝑐: 𝐺𝐸 → 𝐺𝑉 assigning to each edge a start vertex, 

and a mapping 𝑡𝑎𝑟: 𝐺𝑉 → 𝐺𝐸 assigning to each edge a target vertex. A signature Σ =
〈𝑆, 𝑂𝑃〉 consists of a set of sort symbols 𝑆 and a set of operation symbols 𝑂𝑃. A Σ-

algebra A is an S-indexed family (𝐴𝑠)𝑠∈𝑆 of carrier sets together with an 𝑂𝑃-indexed 

family of mappings (𝑜𝑝𝐴)𝑜𝑝∈𝑂𝑃  that contains for each 𝑜𝑝: 𝑠1…𝑠𝑛 ↦ 𝑠 a mapping 

𝑜𝑝𝐴: 𝐴𝑠1 …𝐴𝑠𝑛 ↦ 𝐴𝑠. We denote by |𝐴| the disjoint union of the carrier sets 𝐴𝑠 of A, 

for all 𝑠 ∈  𝑆, which is usually infinite. 

An attributed graph AG where only graph vertices can be attributed is a pair consist-

ing of a directed unlabeled graph G and a Σ-algebra A such that |𝐴|  ⊆  𝐺𝑉. The 
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elements of |𝐴| represent potential attribute values which are regarded as special data 

vertices of the graph (besides the object vertices that model structural entities). An ob-

ject vertex 𝑣 ∈  𝐺𝑉 has an attribute value 𝑎 ∈  |𝐴| if there is an edge from 𝑣 to 𝑎 in 

AG. 

An attributed type graph ATG is an attributed graph where A is the final Σ-algebra 

having 𝐴𝑠 = {𝑠} for all 𝑠 ∈  𝑆. An attributed instance graph is an attributed graph with 

an additional typing morphism which specifies the type of all vertices of the graph. 

A graph morphism 𝑓: 𝐺 → 𝐻 is a pair of functions (𝑓𝑉: 𝐺𝑉 → 𝐻𝑉, 𝑓𝐸: 𝐺𝐸 → 𝐻𝐸) 
compatible with the graph structure, preserving sources and targets: 𝑓𝑉°𝑠𝐺 = 𝑠𝐻°𝑓𝐸 

and𝑓𝑉°𝑡𝐺 = 𝑡𝐻°𝑓𝐸. 

An attributed graph morphism 𝑓: 〈𝐺1, 𝐴1〉 → 〈𝐺2, 𝐴2〉 is a pair of a Σ-homomorphism 

𝑓𝐴 = (𝑓𝑠)𝑠∈𝑆: 𝐴1 → 𝐴2 and a graph homomorphism 𝑓𝐺 = 〈𝑓𝑉 , 𝑓𝐸〉: 𝐺1 → 𝐺2 such that 

|𝑓𝐴|  ⊆  𝑓𝑉, where |𝑓𝐴| = ⋃ 𝑓𝑠𝑠 ∈ 𝑆  and 𝐴1𝑠 = 𝑓𝑉
−1(𝐴2𝑠) for all 𝑠 ∈  𝑆. Informally, an 

attributed graph morphism preserves the graph structure of the attributed graphs. 

Generalizing these concepts, we can define the typed attributed graph transformation 

system 𝐺𝑇𝑆 = (𝛴, 𝐴𝑇𝐺, 𝑋, ℛ), which consists of a data type signature 𝛴, an attributed 

type graph 𝐴𝑇𝐺, a family of variables X over 𝛴, and a set of attributed graph transfor-

mation rules ℛ over 𝐴𝑇𝐺 and X. The rules induce a relation ⇒ on the set of graphs. One 

writes 𝐺
𝑟(𝑜)
⇒  𝐻 to denote that graph H is derived from graph G by applying the rule 𝑟 ∈

 𝑅 at occurrence o. A transformation sequence 𝐺0
∗
⇒𝐺𝑛= 𝐺0

𝑟1(𝑜1)
⇒   …

𝑟𝑛(𝑜𝑛)
⇒    𝐺𝑛 in 𝐺𝑇𝑆 

is a sequence of consecutive transformation steps such that all rules 𝑟𝑖 are from ℛ. 

From this point of view, we can tell, that in our case we can define the projections 

between DSM and DSL metamodel and DSL metamodel and DSL concrete syntax as 

morphisms, that results in the opportunity to define similar transformation rules for all 

these projections. Such unification of transformations during DSL development leads 

to the idea of existence of invariants in DSL dialects structure. 

In this case we understand the invariant not only as a stable set of entities (graph 

vertices) that does not change over time. We also can argue, that we have operational 

invariants – a set of graph transformation rules, which are characterized by the same 

set of constraints and can be applied equally on structurally identical components. Such 

invariants allow us not only to unify and simplify the process of DSL development, but 

also to organize the verification of the consistency of different DSL dialects with the 

mechanisms of invariants. 

4 Conclusion and future development 

In our research we explored a model-oriented and projection-based approach for DSL 

development. Proposed approach is based on the idea, that every DSL contains two 

parts: semantic and the syntactic. Both can be represented as a set of interconnected 

objects, characterized by specific attributes. Such object-oriented description of DSL 

levels results in the opportunity to define the DSL as a model-oriented structure, where 

a certain entity is assigned to each element. 
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What is the most important, the DSL structure is created automatically from the spe-

cific DSM using the so-called semantic projection mechanism. The semantic projection 

is an operation, which is conducted over the DSM and the result of which is also a 

semantic model that is obtained by transforming the original DSM. The result of pro-

jection describes the DSL semantic model. 

In comparison with the existing approaches to DSL development (like [5], [6], [14]), 

which use a traditional cycle of DSL development, starting from the definition of the 

DSL concrete syntax, our approach starts with the generation of DSM, which is a dy-

namic, time-varying structure. Under these circumstances, the DSL semantic model can 

be obtained as a projection of such DSM through M2M transformations. Furthermore, 

the DSL syntactic model is also the result of the projection of the DSL semantic model 

onto users’ requirements and needs. 

As a result, the proposed DSL development process is conducted in full accordance 

with the conceptual scheme of the target domain, thereby ensuring the participation of 

end-users in the process of its creation. In addition, the projection-based principle of 

the DSL development allows the users to achieve the resilience of the DSL created both 

with the target domain (represented by DSM) and users’ requirements. Created DSL 

can be transformed on the semantic and syntactic levels separately, using M2M trans-

formations for projections realizations. At the same time, the consistency of the created 

DSL dialects is preserved. 

Among advantages of the approach proposed its reusability and end-user orientation 

should be mentioned. The approach can be transferred to any domain for which the 

DSM is defined. The model-oriented structure of DSL is also an understandable and 

convenient for end-user. This format of DSL representation results in the opportunity 

to make changes to DSL without special programming skills. 

Planning further research, the definition of projections using invariants can be pro-

vided. Such invariants mechanism will allow to automate the comparison and matching 

different DSL dialects, using once defined invariant transformation rule to different 

DSL syntaxes. 
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