Business Process Simulation Revisited

Keynote 6th International Workshop on Enterprise & Organizational Modeling and Simulation (EOMAS 2010), June 7-8, 2010, Hammamet, Tunisia

prof.dr.ir. Wil van der Aalst

Eindhoven University of Technology

Where innovation starts

state-of-art in simulation

Although many organizations have tried to use simulation to analyze their business processes at some stage, *few are using simulation in a structured and effective manner.*

Problems:

- 1. Oversimplified models (e.g., naïve resource modeling)
- 2. Artifacts already available are not used as input (e.g., event logs)
- 3. Not for operational decision making ("steady state" rather than "fast forward")

Acknowledgements 1/2

- W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process Simulation: How to get it right? In *Handbook on Business Process Management, International Handbooks on Informa*tion Systems, pages 317-342. Springer-Verlag 2010. [1]
- W.M.P. van der Aalst, M. Pesic, and M. Song. Beyond Process Mining: From the Past to Present and Future. In *CAiSE'10, volume 6051 of Lecture Notes in Computer Science, pages 38-52. Springer-Verlag, 2010.* [2,3]
- B.F. van Dongen, R.A. Crooy, and W.M.P. van der Aalst. Cycle Time Prediction: When Will This Case Finally Be Finished? In CoopIS 2008, volume 5331 of Lecture Notes in Computer Science, pages 319-336. Springer-Verlag, 2008. [3]
- J. Nakatumba and W.M.P. van der Aalst. Analyzing Resource Behavior Using Process Mining. In S. Rinderle-Ma, S. Sadiq, and F. Leymann, editors, *BPM 2009-BPI'09, volume 43 of Lecture Notes in Business Information Processing, pages* 69-80. Springer-Verlag, 2010. [2]
- H.A. Reijers and W.M.P. van der Aalst. Short-Term Simulation: Bridging the Gap between Operational Control and Strategic Decision Making. In IASTED International Conference on Modelling and Simulation, pages 417-421,1999. [2,3]

Acknowledgements 2/2

- A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation Models. *Information Systems*, *34*(*3*):305-327, 2009. [2]
- A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Workflow Simulation for Operational Decision Support. *Data and Knowledge Engineering*, 68(9):834-850, 2009. [2,3]
- N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Resource Patterns: Identification, Representation and Tool Support. In CAiSE'05 volume 3520 of Lecture Notes in Computer Science, pages 216-232. Springer-Verlag, 2005. [1]
- M. Wynn, A. Rozinat, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Chapter 17: Process Mining and Simulation. In *Modern Business Process Automation: YAWL and its Support Environment, pages 437-457. Springer-Verlag,* 2010. [2,3]

Problem 1: Oversimplified models (e.g., resource modeling)

Everything should be made as simple as possible, but not one bit simpler. Albert Einstein (1879-1955)

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Business Process Simulation

(classical view)

How to Lie With Statistics?

How to Lie With Simulation?

- M/M/1 queue: arrival rate λ , service rate μ , utilization $\rho = \lambda/\mu$.
- Flow time = $1/(\mu \lambda)$, # in system = $\rho/(1 \rho)$

Processes cover the entire spectrum of Italian cuisine ...

and are different from what people

Problems when modeling human resources

- People do not work at a constant speed, cf. Yerkes-Dodson Law of Arousal, coffee breaks, weather, etc.
- People are involved in multiple processes. Hence, different processes/tasks compete for attention and availability is "fluid".
- People tend to work part-time and in batches. Different working patterns: every Friday, when the pile is too large, ...
- **Priorities are difficult to model.** Competing processes/resources have undefined precedence rules.
- Processes may change depending on context. Things are skipped or done in a sloppy manner when ...

Yerkes-Dodson Law of Arousal

, time

Classical simulation assumptions

• A resource is:

- eager to start working,
- dedicated to a single process,
- works at a constant speed,
- does not work in batches,
- does not have coffee breaks,
- etc.
- Do you know this person?

Avoid modeling the world in a detailed manner

Goal: Characterize resource availability with just a few parameters

Chunks

W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process Simulation: How to get it right? In *Handbook on Business Process Management, International Handbooks on Informa*tion Systems, pages 317-342. Springer-Verlag 2010.

Chunks: Basic Idea

resource:inactiveready

busy

Parameters

- $\rho = \lambda/\mu \le a$, i.e., utilization is less than availability
- c ≤ h, i.e., chunk size cannot be larger than the horizon
- (a*h) mod c = 0 in experiments to avoid unusable availability

CPN model

Effect of availability (a)

90% Confidence Interval values for the Availability

Fig. 9. Graph showing availability against flow time $(\lambda = \frac{1}{100}, \mu = \frac{1}{15}, \rho = 0.15, c = 200, and h = 1000)$. The flow time reduces as the availability increases. (The straight line shows the trend using linear regression.)

Effect of chunk size (c)

90% Confidence Interval Values for the Chunk size

Fig. 10. Graph showing chunk size against flow time $(\lambda = \frac{1}{100}, \mu = \frac{1}{15}, \rho = 0.15, a = 0.2, and h = 1000)$. The flow time increases as the chunk size increases.

Effect of horizon (h)

90% Confidence Interval values for the Horizon

Fig. 11. Graph showing the horizon against the flow times $(\lambda = \frac{1}{100}, \mu = \frac{1}{15}, \rho = 0.15, c = 200, and a = 0.8)$. The flow time decreases as the horizon increases.

Effect of utilization (ρ)

90% CI values for the Utilisation

Fig. 12. Graph showing utilization against flow time ($\mu = \frac{1}{15}$, c = 200, a = 0.8, and h = 1000). The flow time increases as utilization increases.

Experiment: Note multiple resources and potential accumulation of effects

CPN model

Some findings

		Parameters		Flow Time
a)		Base Case Scenario ($c = 5, h = 2000, \lambda = \frac{1}{50}$ and $a = 0.4$, see		
		Appendix B for all other parameters)		
				757.6 ± 65.0
b)	i)	Divide the horizon by 20 $(h = 100)$		
				1218.9 ± 72.3
	ii)	Divide the horizon by 40 $(h = 50)$		
				1247.8 ± 51.8
c)	i)	Multiply the chunk size by 5 $(c = 25)$		
				1158.7 ± 47.2
	ii)	Multiply the chunk size by 20 $(c = 100)$		
				1698 ± 139
	iii)	Multiply the chunk size by 80 $(c = 400)$		
				1950 ± 83.7
	iv)	Multiply the chunk size by 160 $(c = 800)$		
				2025 ± 99
d)	i)	Decrease availability and arrival rate by 2 ($a = 0.2, \lambda = \frac{1}{100}$)		
				1634 ± 105
	ii)	Decrease availability and arrival rate by 4 $(a = 0.1, \lambda = \frac{1}{200})$		
				3420.32 ± 252

"Chunks" Conclusion

- It is important not to assume that people are always available and eager to work when cases arrive.
- Assumptions heavily impact flow time, e.g., the bigger the chunk size, the longer the flow times of cases.
- The "chunk model" is rather simple, however, the typical assumptions made in today's simulation tools (i.e. a = 1, c = 0, and h = inf), may result in flow times of minutes or hours while with more realistic settings for a, c, and h the flow time may go up to weeks or months and actually coincide with the actual flow times observed.

Problem 2: Artifacts already available are not used as input (e.g., event logs)

Learning is not compulsory ...

neither is survival.

William Edwards Deming (1900-1993)

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Growth of data

Growth of data, processes, and their models

Process Mining: Linking events to models

PAGE 31

Using history, models, and current state information

Problem 3: Not for operational decision making ("steady state" rather than "fast forward")

Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

If you don't know where you are going, any road will get you there. Lewis Carroll (1832-1898)

Focus Business Process Simulation

classical focus of simulation (tools)

Steady state analysis

(re-)design-time analysis, i.e., not for operational decision making

Transient analysis

Steady-state may not exist and may not be relevant!

Example: Short-Term Simulation

Overview: Short-Term Simulation

Implementation using YAWL, ProM, and CPN Tools

ProM: Merging and converting models covering different aspects

Example: Four different simulation scenarios

- 1. An empty initial state ('empty')
- 2. After loading the current state file with the 150 applications currently in the system ('as is')
- 3. After loading the current state file but adding four extra resources ('to be A')
- 4. After loading the current state file and adding eight extra resources ('to be B')

Number of applications that are in the system for four different scenarios

Confidence intervals

Conclusion Short-Term Simulation

- Transient analysis is essential for operational decision making!
- The initial state matters!
- Artifacts (design, historic, and current state information) from a workflow management systems like YAWL can be used!
- Interesting side effect of the YAWL, ProM, CPN Tools integration: the real and simulated process can be viewed in a unified manner using process mining!

Conclusion

TUE Technische Universiteit Eindhoven University of Technology

Where innovation starts

Problems and some solutions ...

Relevant WWW sites

ProM

- http://www.processmining.org
- http://www.win.tue.nl/ieeetfpm
- http:// promimport.sourceforge.net
- http://prom.sourceforge.net
- http://www.workflowpatterns.com
- http://www.workflowcourse.com
- http://www.vdaalst.com

LaQuSo Laboratory for Quality Software Reta Technische Universiteit